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Introduction

People carrying germline mutations of the breast cancer susceptibility gene BRCAZ2 have
increased risk for breast, ovarian, pancreatic and other types of cancer (1-3). Mouse cells lacking
a functional Brca2 gene are deficient in repairing DNA damage (4-8). Capan-1, a human
pancreatic cancer cell line, is the only human cell line known to not express wild-type BRCAZ2.
Capan-1 cells carry only a mutant BRCA2 (6174delT) and expresses a truncated BRCA?2 protein
(9-12). The BRCA2 6174delT mutation is one that found frequently in Ashkenazi Jews and one
that clearly predisposes its carriers to a variety of cancers (13-18). Capan-1 cells have been
shown to be more sensitive to DNA damaging agents than other human cell lines were (11, 19).
However, Capan-1 cells have many additional genetic alternations compared to these other
human cell lines, whether the increased sensitivity of Capan-1 cells to genotoxic agents is caused
by the lack of functional BRCA?2 is not clear. The goals of this study are to investigate whether
alternation of the expression of wild-type BRCA2 in human cell lines would alter the ability of
these cells to repair their DNA damage. We have accomplished the Task 1 of this project, to
establish Capan-1 derivatives that express wild-type BRCA2. We have completed the first part of
Task 3 of this project, to investigate whether expression of wild-type BRCA?2 alters the
sensitivity of Capan-1 to DNA damaging agents. We are actively pursuing the Task 2, generation

of MCF7 and MCF-12A derivatives that do not express BRCA2.

Body

1. Characterization of wild-type BRCA2-expressing Capan-1 derivatives

We examine the sensitivity to DNA damaging chemicals of Capan-1 derivatives that
expressed the wild-type BRCA?2 and those did not. We chose methyl methanesulfonate (MMS),
mitomycin C, etoposide and mitoxantrone for this study. The detail of this study is described in
the legend of figure 1. We performed this study three times and with duplication experiment each
time. Our results show that there is no apparent difference in the sensitivity to DNA damaging
drugs between the Capan-1 cells expressing and not expressing wild-type BRCA2 (Figure 1).
These results are consistent with the lack of reduced sensitivity to y-radiation of BRCA2-

expressing Capan-1 derivatives reported in last year's progress report. Thus, our study
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demonstrates that expression of wild-type BRCA2 does not reduced the sensitivity of Capan-1

cells to DNA damaging agents.
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Figure 1. Sensitivity of Capan-1 derivatives to DNA damaging drugs. One thousand indicated

cells were plated on each well of 96-well plate in the presence of tetracycline. Tetracycline was

removed from (I) or maintained in (U) the media to regulate the expression of wild-type BRCA2

two days after cell plating. Another two days later, cells were treated with drugs as indicated.

Cells were treated with MMS for one hour, washed then cultured in tetracycline-free (I) or

tetracycline-containing (U) media for two days. For all other drugs, cells were treated for two

days in tetracycline-free (I) or tetracycline-containing (U) media. Survived cells were measured

by using MTT assay. The results of three duplicated experiments are shown.
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2  Generate MCF7 and MCF-12A derivatives that do not express BRCA?2

A. Antisense approaches. We have attempted to reduce BRCA2 level in cells by expressing a
BRCA2 cDNA fragment at antisense orientation. We used a 662 bp BRCA2 cDNA fragment that
contained 282 bp of 5' untranslated region and 380 bp of the most 5' coding region. MCF7 cells
were transfected with plasmids expressing this BRCA2 cDNA fragment at the antisense
orientation under the control of either a constitutive cytomegaloviral early promoter or a
tetracycline regulated promoter and stable transfectants were selected and isolated. We examined
the BRCA?2 protein level of more than 100 clones by immunoblotting but did not identify any
clone that expressed reduced level of BRCA2.

B. Somatic knockout. We have isolated a genomic DNA clone that contained from intron 4 to

intron 23 of BRCA2. We have generated a somatic knockout vector (Figure 2).

Genomic Fragment Genomic Fragment

= (ox{ IRES |  NEO KGox>x ]

Figure 2. Vector for gene knockout.
C. The small interfering RNA (siRNA) approach. The siRNA approach has recently been
demonstrated to be an effective method to reduce gene expression. For mammalian cells, this
was demonstrated first by using synthetic RNA oligonucleotides (20, 21). More recently, several
groups have shown that the expression of several genes could be reduced by transfecting cells
with plasmids that express siRNA from RNA polymerase III promoters (22-30).

We have successfully reduced the BRCA2 level in MCF7 cells by transfecting them with
two different synthetic siRNA targeting BRCA2 (Figure 3). In contrast, the BRCAZ2 level was

not affected in cells transfected with siRNA targeting a different gene. We are currently
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developing plasmids that expressing siRNA targeting BRCA2 and will use these plasmids to

reduce BRCA2 in MCF7 and MSF-12A cells.
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Figure 3. Reducing BRCA2 level by siRNA.

MCEF7 cells were transfected with a synthetic siRNA targeting EBF3 (lane 1) or two different
siRNAs targeting two different regions of BRCA2 (lanes 2 and 3). Cell lysates isolated from
transfected cells containing similar amount of total protein were resolved by SDS-PAGE on 6%
(top panel) or 12% (bottom panel) gels and indicated proteins were detected by using
immunoblotting (12, 31). For EBF3, the top two bands are two different forms of EBF3

translated from alternatively spliced mRNA whereas the bottom band is a nonspecific protein.

Key Research Accomplishments

e We have shown that expression of wild-type BRCA2 does not reduce the sensitivity of
Capan-1 cells to DNA damaging agents.

e We have identified two different siRNAs that can reduce the expression of BRCA2.

Reportable Outcomes

e A paper showing the effect of expressing wild-type BRCA2 on the growth of Capan-1 cells
has been published (Cancer Res., 62: 1311-1314, 2002).

e An abstract describing the results of characterization of wild-type BRCA2-expressing

Capan-1 derivatives has been submitted to the third Era of Hope meeting.
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Conclusions

We have accomplished Task 1 of this project, generation of wild-type BRCA2-expressing

Capan-1 derivatives. We have completed the first part of Task 3. We are also working on the

Task 2, generation of MCF-12A and MCF7 derivatives that do not express wild-type BRCAZ2.

We will continue working on Task 2 and Task 3 in the next year.
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Advances in Brief

Inhibition of Cancer Cell Growth by BRCA2!

Shao-Chun Wang, Ruping Shao, Annie Y. Pao, Su Zhang, Mien-Chie Hung,” and Li-Kuo Su

Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030

Abstract

The breast cancer susceptibility gene BRCA2 has been suggested to
function as a “caretaker” of the genome. Cells without wild-type BRCA2
are deficient in repairing DNA damage. However, whether BRCA2 can
also suppress oncogenesis by regulating cell proliferation remains to be
determined. To address this question, the expression of wild-type BRCA2
protein was reconstituted, in an either constitutive or regulated manner,
in the pancreatic cancer cell line Capan-1, which expresses only a mutant
BRCA2. Expression of wild-type BRCA2 inhibited cell proliferation in
culture and suppressed tumor growth in animals. Our results showed that,
in addition to the DNA repair function, BRCA2 also suppresses tumor
development by inhibiting cancer cell growth.

Introduction

People carrying germ-line mutations of the breast cancer suscepti-
bility gene BRCA2 have increased risk for breast, ovarian, pancreatic,
and other types of cancer (1-3). Tumors developed in heterozygous
BRCA2 mutation carriers are frequently associated with loss of het-
erozygosity at the BRCA?2 locus, a result consistent with a critical
function of BRCA2 in tumor suppression. BRCA?2 has been suggested
to be a “caretaker” and to play an important role in maintaining
genomic integrity (4). Cells without a wild-type BRCA2 gene are
deficient in repairing the DNA damage caused by genotoxic agents,
such as ionizing radiation (5-11). We and others have shown that the
expression of BRCA2 is tightly regulated in a cell cycle-dependent
manner, with an expression level low in G, phase and peaked in S-G,
phases of cell cycle. Because the signaling of DNA damage repair is
usually coupled with cell cycle progression, the question of whether
BRCAZ2 can also regulate cell proliferation is intriguing and remains
to be determined (12, 13). To address this question, we expressed the
wild-type BRCA2 protein in Capan-1 cells. Capan-1 is a human
pancreatic cancer cell line that expresses only a COOH-terminal
truncated BRCA?2 protein (14, 15). We established and characterized
stable transfectants of Capan-1 cells that expressed wild-type BRCA2
either constitutively or through a tetracycline-regulated expression
system. Our results showed that, in addition to the DNA repair
function reported previously, BRCA2 also involved in the negative
regulation of cell proliferation in vitro and tumor growth in vivo.

Materials and Methods

BRCA?2 Expression Plasmids. We isolated the cDNA for the entire coding
region of BRCA2 by RT-PCR.? Because of its large size, the BRCA2 coding
region was divided into four fragments for RT-PCR. Four to 10 clones of each
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amplified fragment were sequenced to identify those that did not contain any
mutation resulting from the PCR reaction. These fragments were ligated
sequentially together to obtain the full-length cDNA for BRCA2. The Xhol
restriction site was engineered at both ends of the assembled BRCA2 cDNA.
To facilitate the assembly of the full-length coding cDNA of BRCA2, codon
798 was changed from CTC to CTT to create a HindlIl restriction site;
however, this change does not alter the encoded amino acid. To construct
pCINBRCAZ2, the BRCA2 cDNA was inserted at the Xhol site of an expression
vector pCIN (16). To construct p236BRCA2, the pcDNA3 vector (Invitrogen,
Calsbad, CA) was first modified by inserting a 236-bp fragment of the 5’
untranslated region of BRCA2 between the Kpnl and Notl sites. The assembled
full-length BRCA2 ¢cDNA was then inserted at the Xhol site of this plasmid.
The 5’ untranslated region of BRCA2 was obtained by RT-PCR using primers
5-GGTACCGGTGGCGCGAGCTTCTGA-3’ and 5'-GCGGCCGCAACTA-
CGATATTCCTCCAAT-3'.

Generation of Wild-type BRCA2-expressing Capan-1 Derivatives. The
stable cell line CINBRCA?2 was generated by transfecting Capan-1 cells with
pCINBRCA?2, and the cell clone 236BRCA2 was generated by transfecting
Capan-1 cells with p236BRCA2. Plasmid DNA (10 pg) was mixed with the
cationic liposome DC-Chol at a ratio of 1 ug DNA:13 nmol of DC-Chol (17).
The DNA/liposome complex was then added to the cell culture dish and
incubated for 16 h. Transfected cells were cultured for 3 days before subjected
to G418 (500 pg/ml) selection. BRCA2TN, neoTN-1, and neoTN-2 were
obtained by transfecting Capan-1 cells with tTA-IRES-Neo (18) together with
a derivative of pUHD10-3 (19) that expressed BRCA2 at 1:9 ratio using
Lipofectamine Plus (Life Technologies, Inc.), then selected with G418. Re-
sulted clones were screened for BRCA?2 protein expression using anti-BRCA2
antibodies. Both neoTN-1 and neoTN-2 expressed the tetracycline-controlled
transactivator but did not express wild-type BRCA2 protein (data not shown).

Detection of the Expression of Exogenous BRCA2. To detect the expres-
sion of the exogenous BRCA2 RNA, a 524-bp BRCA2 cDNA fragment
containing codon 798 was amplified by RT-PCR and was digested with the
restriction enzyme Hindlll. The RT-PCR product of the exogenous BRCA2
could be digested by HindlIlI to generate two fragments of 255 bp and 265 bp
because of the presence of an engineered HindIll site. The RT-PCR product of
the endogenous BRCA2 RNA lacked this HindlIll site and remained intact as a
524-bp fragment.

Immunoblotting was used to detect BRCA2 protein. Cells were harvested
and lysed in ice-cold NETN [150 mm NaCl, 1 mm EDTA, 20 mm Tris-HCI (pH
8.0), and 0.5% NP40] or radioimmunoprecipitation assay buffer [SO mm
Tris-HCI (pH 8.0), 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, and
1% NP40] buffer. Total cell protein extracts were quantified by the Bradford
assay (Bio-Rad, Hercules, CA.). Equal amounts of lysate protein (60-120 ug)
were separated by SDS-PAGE and blotted to polyvinylidene fluoride mem-
brane (Bio-Rad). Proteins were then identified using BRCA2 antibodies N61
(15) or Ab-2 (Oncogene Science, Cambridge, MA).

Determination of Cell Growth Rate. Thymidine incorporation assay was
used to measure DNA synthesis. Cells (250) were plated in each well of a
96-well plate and cultured for 48 h, then incubated with 1 uCi of [methyl-[*H]]
thymidine (Amersham, Arlington Heights, IL.) in the presence of serum for
16 h. Cells were harvested, and the amount of incorporated [methyl-[3H]]
thymidine was measured with a scintillation counter (Beckman). To measure
the rate of cell number increasing, 2000 cells were plated in each well of a
96-well plate. Cell number of the culture at different days after plating was
determined by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazo-
lium bromide assay. Clonogenic assay was also used to measure the growth
rate of cells. Cells were plated in a six-well plate at a density of 1000 cells/well
and allowed to grow for 2.5 weeks with media changed every 2 days. For
tetracycline-regulated Capan-1 derivatives, cells were cultured in the tetracy-
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cline-containing media all of the time or in the tetracycline-free media begin-
ning 2 days after plating.

Tumorigenicity Assay and Culture of Tumor Cells. Cells were harvested
by trypsinization, washed with PBS, then suspended in PBS at the density of

236BRCA2
CAPAN-Ynco

U208
CAPAN-1
CINBRCA2
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-
; 3 8
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< < ]
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Fig. 1. Generation of constitutive wild-type BRCA2-expressing Capan-1 derivatives.
A, expression of wild-type BRCA2 protein. Proteins isolated from a positive control cell
line (U-2 OS) that expressed endogenous wild-type BRCA2, two negative control cell
lines (Capan-1 and Capan-1/neo), and the two BRCA2-expressing clones (CINBRCA2 and
236BRCA2) were separated using SDS-PAGE on a 6% gel. BRCA2 proteins were
detected by the monoclonal antibody N61 that recognized the NH,-terminal region of the
BRCA2 (15). Arrows, the full-length BRCA2; *, the endogenous truncated BRCA2 in
Capan-1 cells. B, expression of exogenous BRCA2 mRNA. BRCA2 RNA isolated from the
parental cells (Capan-1I), the vector-transfected cells (Capan-1/neo), and the two BRCA2-
expressing derivatives (236BRCA2 and CINBRCA2) was amplified using RT-PCR. The
RT-PCR products were digested with HindIII and resolved on an agarose gel. The
RT-PCR product of the exogenous BRCA2 could be digested by HindIIl to generate two
fragments of 255 and 265 bp because of the presence of an engineered Hindlll site. The
RT-PCR product of the endogenous BRCA2 RNA lacked this HindIII site and remained
intact as a 524-bp fragment. The Hindlll-digested PCR product from a plasmid carrying
the BRCA2 cDNA was included as a positive control. Arrow, the digested small fragments,
which were not resolved in this gel. R7, reverse transcriptase.
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Fig. 3. Inhibition of Capan-1 growth by inducible wild-type BRCA2 expression. A,
tetracycline-regulated BRCA2 expression in BRCA2TN. Lysates were prepared from
BRCA2TN cells grown in the presence (Uninduced) or absence (Induced) of tetracycline
for 1 or 2 days as indicated. The lysate of MCF-7, a breast cancer cell line that expresses
wild-type BRCA2 protein (15), was included as a positive control. BRCA2 was detected
by immunoblotting using N61 antibody. Arrow and *, the full-length BRCA2 and
endogenous truncated BRCA2 in Capan-1 cells, respectively. B, suppression of
BRCA2TN growth by the wild-type BRCA2. Cells (1000) from each of the indicated
Capan-1 derivatives were plated in each well of six-well plates in medium containing
tetracycline. Cells were grown for 2.5 weeks, either in media containing tetracycline (U)
or in tetracycline-free media (/) beginning 2 days after plating. The resulting colonies were
stained with crystal violet. The results shown are from a triplicate experiment. C, flow
cytometry analysis of the BRCA2 inducible, as well as the control cell lines. Numbers, the
percentage of cells in each cell cycle stage. Data shown are derived from a representative
experiment. Data shown are derived from a representative experiment. The percentage of
each cell cycle stage added up to be 100% and was determined independently from the
subG, measurement. U, uninduced; 7, induced.

1 X 107 cells/ml. Cell suspension was injected s.c. into both flanks of female
nude mice of 68 weeks of age. Tumor volumes were determined by external
measurement in two dimensions and calculated using the equation
V = (L X W?) X 0.5, where V is volume, L is length, and W is width. To
recover the cells from the 236BRCA2-derived tumor, the tumor was resected,
chopped, and digested with trypsin, then plated for culturing. Individual
colonies and a pool of the tumor cells were obtained. Only cells of the early
passages (two to six passages) were used for molecular characterization.
Animal care was performed in accord with institution guidelines.
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Fig. 2. Inhibition of Capan-1 cell growth in vitro by constitutive j L o081
wild-type BRCA2 expression. A, cell growth assay using (*H]thymi- £ 61 8
dine incorporation. The results shown are from a quadruplet assay. B, 8 0.6 1
determination of cell growth by 3-(4,5-Dimethylthiazol-2-y1)-2,5- 41 0.4 1
diphenyl-2H-tetrazolium bromide assay. The results shown are from a
quadruplet assay. C, clonogenic assay for cell growth. Cells (1000) 27 02§
from the indicated Capan-1 derivatives were plated in each well of 0 . ., 0
six-well plates. The cells were allowed to grow for 2.5 weeks, and the 1 2 3 4 5
resulting colonies were stained with crystal violet. The results shown
are from a triplicate experiment. D, flow cytometry analysis of BRCA2 Day
transfectants. Numbers, the percentage of cells in each cell cycle stage. D
Data shown are derived from a representative experiment. The per- ‘
centage of each cell cycle stage added up to be 100% and was subGelGo/G1 S G2M
determined independently from the subG, measurement. Capan-1 739 136 125
Capan-l/neo 06 | 825 98 7.7
236BRCA2 095 | 67.2 164 164
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Results and Discussion

To investigate the possible role of wild-type BRCA2 in regulating
cell growth, we generated Capan-1 derivatives that express wild-type
BRCA2. We did not use approaches that transiently express BRCA2
in Capan-1 cells, such as transient transfection or virus-mediated gene
transfer, because these approaches would not allow us to study the
phenotypes of BRCA2-expressing Capan-1 cells for a long period of
time. In addition, the Capan-1 cell line is known to have very low
transfection efficiency (7), and the size of BRCA2 cDNA (~10 kb) is
beyond the packaging capacity of virus when using commonly used
recombinant viral vectors.

We first obtained two Capan-1 derivatives (236BRCA2 and
CINBRCA?2) that constitutively expressed wild-type BRCA2 after
screening ~400 G418-resistant clones by immunoblotting (Fig. 14).
The level of full-length BRCA2 protein in clone 236BRCA2 was
higher than that of CINBRCA2. The expression of wild-type BRCA2
protein was confirmed by using immunoprecipitation followed by
immunoblotting with different BRCA2 antibodies (data not shown).
The expression of the exogenous BRCA2 RNA in these two clones
was also demonstrated by RT-PCR followed by HindlIl digestion
(Fig. 1B). The growth rate of these two BRCA2-expressing clones
correlated with the expression levels of wild-type BRCA2 protein, and
both clones grew slower than the parental Capan-1 cells and a control

Capan-1 derivative (Capan-1/neo), which was transfected with an
empty vector (Fig. 2). These results suggested that high-level expres-
sion of BRCA? in the Capan-1 cells was not compatible with cell
growth and might partially explain the difficulty in obtaining Capan-1
derivatives that constitutively expressed wild-type BRCA?2 protein.
To rule out the possibility that the reduced growth rate of BRCA2-
expressing derivatives was simply because of clonal variation and
confirm that the cell growth suppression was the consequence of
expressing wild-type BRCA2, we established a Capan-1 derivative
(BRCA2TN) that expressed wild-type BRCA2 protein under the
regulation of tetracycline (Fig. 3A). The growth of BRCA2TN was
suppressed significantly when the wild-type BRCA2 protein was
induced to express in the absence of tetracycline (Fig. 3B). The
growth inhibition was unlikely simply because of the activation of the
tetracycline-controlled transactivator, because the growth of two con-
trol cell lines (neoTN-1 and neoTN-2) that did not express BRCA2
but expressed functional tetracycline-controlled transactivator (data
not shown) was not affected by the removal of tetracycline (Fig. 3B).
Capan-1 cells are highly tumorigenic in nude mice. In a preliminary
experiment, we found that expression of wild-type BRCA2 sup-
pressed tumorigenesis, and the level of suppression correlated with the
level of BRCA2 (data not shown). This observation was confirmed in
a subsequent experiment. Of 10 inoculations, 236BRCA2 cells re-
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sulted in only two slow-growing tumors, whereas Capan-1/neo cells
resulted in six vigorously growing tumors (Fig. 44). All of the mice
inoculated with 236BRCA2 cells were still alive 28 weeks after the
inoculation, whereas all of the mice bearing Capan-1/neo-derived
tumors died in <28 weeks of the inoculation (Fig. 4B). The expres-
sion of wild-type BRCA2 protein was undetectable in cells recovered
from the 236BRCA2-derived tumor. This result suggested that loss of
wild-type BRCA2 protein expression might be necessary for the
growth of such tumors (Fig. 4B, inset).

The inhibition of tumor growth by BRCA2 was confirmed when
BRCA2TN cells were studied. The growth rate of these cells was
reduced significantly in mice that the wild-type BRCA2 protein was
induced to express than in mice that the expression was repressed. The
inhibition of tumor growth was not because of the activation of
tetracycline-regulated transactivator or lack of doxycycline because
there was no difference in the growth of control cell lines (Capan-1,
neoTN-1, and neoTN2) between the two groups of mice (Fig. 4C).

By reconstituting wild-type BRCA2 expression in the BRCA2 mu-
tant cell line Capan-1, we demonstrated that the expression of wild-
type BRCA2 protein suppressed the growth of Capan-1 cells in vitro
and in vivo. Our results strongly suggest that, in addition to guarding
the genomic integrity as reported previously (5-11), regulation of cell
proliferation contributes to the tumor suppression function of BRCA2.
Because the p53 gene is mutated in Capan-1 cells (20), this cell-
growth inhibition likely occurs through a p53-independent mecha-
nism. The Rb pathway is also not required for growth suppression by
BRCA2 because the Rb cell cycle regulation pathway is not functional
in Capan-1 cells (21). Flow cytometry analysis of the constitutive
BRCA2 transfectants, as well as the inducible BRCAZ2 clone, did not
show an increased sub-G,-G, cell population, nor significant abnor-
mality of cell cycle distribution (Fig. 2D and 3C). Therefore, the
decreased growth rate of these two clones was unlikely to have
resulted from increased cell death or arrest of cell cycle progression at
certain stages. Additional investigations will be necessary to under-
stand the mechanism of regulating cell proliferation by BRCA2.
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